
About Lab 4

Lab 4 asks you to hand in 3 programs. One uses
the drawing features of the picture module to
make a picture.

The picture is fun and not hard. Unfortunately it is
also mesmerizing. There are always more tweaks
you can add to improve it. I suggest that you just
make a quick start on it during the lab, and return
to it after you have finished the last part of the lab,
which is a game.

The second part of the lab gives you a main() function
and asks you to write 3 functions that it calls

• square(x) returns x*x
• checkEvenOrOdd(x) prints a statement about

 whether x is even or odd
• reverse(x) starts with integer x and returns the

 number with the digits of x in reverse order:
 reverse(235) is 532

Here is an algorithm for reverse(). Suppose the
argument is n and you start variable total at 0.
At each step d = n%10, n is n//10, and
 total =10*total+d
This continues until n is 0

For example, start with 235
 Step 0: n is 235, total = 0
 Step 1: d is 5, n is 23, total is 5
 Step 2: d is 3, n is 2, total is 53
 Step 3: d is 2, n is 0, total is 532

Note that if you start with 100:
 Step 0: n is 100, total = 0
 Step 1: d is 0, n is 10, total is 0
 Step 2: d is 0, n is 1, total is 0
 Step 3: d is 1, n is 0, total is 1
So the reversal of 100 is 1.

The primary thing that will take up your time in
this week's lab is implementing the game
Mastermind. In your game the computer will
randomly select a "code" consisting of 4 letters
from the string "RGBOYP" (which stand for
"Red", "Green", "Blue", "Orange", "Yellow", and
"Purple"). The user's job is to guess the code.
The user gets 10 guesses.

The response the computer makes to a user's guess
consists of two kinds of "pegs". A black peg
indicates a choice of the correct color in the correct
position. A white peg indicates a correct color in
the wrong position.

For example, suppose the code and guess are

 code: RRYG
 guess: RYGB

There is one slot where the guess has the correct
color and two slots in the guess where the colors
are correct but in the wrong location. So the
correct response is
 1 black peg 2 white pegs

How should we respond to this?

 code RRYB
 guess BYRB

A. 1 black, 3 white
B. 1 black, 2 white
C. 1 black, 1 white
D. 2 black, 2 white

To this?

 code RRYB
 guess RRRR

A. 2 black, 3 white
B. 2 black, 2 white
C. 2 black, 1 white
D. 2 black, 0 white

To this?

 code RRYB
 guess RBBR

A. 1 black, 3 white
B. 1 black, 2 white
C. 1 black, 1 white
D. 2 black, 2 white

Here is pseudo code for the main() function:
def main():
 < print welcome to game>
 code = generateCode()
 print(code) # for debugging; remove before handin

 done = False
 while not done:
 guess = input(<prompt for a guess>)
 numGuesses = numGuesses + 1
 black, white = evaluateGuess(guess, code)
 < respond to guess>
 if black == 4:
 done = True

This pseudocode has the game continuing until
the user guesses the code. The lab actually asks
you to also keep a count of the number of
guesses and to stop the game when that gets up
to a constant NUM_GUESSES, which you should
set to 10.

This organizational structure has you writing two
primary functions:

• generateCode() builds and then returns a
random string of length 4 made from the
letters RGBOYP

• evaluateGuess(guess, code) returns the
number of black pegs and the number of
white pegs for the guess

Function generateCode() should be easy. Let variable
colors be the string
 colors = "RGBYOP"

If you let i be a random index between 0 and 5, then
 colors[i]
is the next letter to add to your code. Do this 4 times
(gee, how can we make something happen 4
times???) and you have your code.

The evaluateGuess(guess, code) function is harder.
You want to do this in 2 stages -- first count the
number of black pegs, then count the number of
white ones. Since black pegs correspond to colors
in the right location, you need to be able to
compare corresponding entries of the two strings.
Have a loop on variable i and increment the
number of black pegs when guess[i] == code[i].

To ensure that you don't use an entry for both a
black peg and a white one, when you find a match
replace the code entry by 'x' and the guess entry by
'y'. For example, with

 code RRYB
 guess RRRR

after the loop counting black pegs the strings
should be

 code xxYB
 guess yyRR

The loop for counting white pegs has one loop
going through every index i of the guess and every
index j of the code. If you find that
guess[i]==code[j], then increment the white
counter and replace the letters by 'x' and 'y' to
avoid reusing the pegs.

For the example,
 code RRYB
 guess BYRB
after the black peg loop we have
 code RRYx
 guess BYRy
and after the white peg loop it is
 code xRxx
 guess Byyy

The lab makes a suggestion for how to replace one
letter of a string. If you want to make the ith letter
of guess be 'x' you could say
 guess = guess[0:i]+'x'+guess[i+1:]

Or you could make a function
 def replace(s, i, newLetter):
 answer = s[0:i]+newLetter+s[i+1:]
 return answer

and call

 guess = replace(guess, i, 'x')

